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In oscillatory flows through systems of branched or curved tubes, Taylor dispersion 
is modified both by the oscillation and by the induced secondary motions. As a model 
for this process, we examine axial transport in an annular region containing an 
oscillatory axial and steady secondary (circumferential) flow. Two complementary 
approaches are used: an asymptotic analysis for an annulus with a narrow gap (6) 
and for large values of the secondary flow PBclet number ( P ) ;  and a numerical 
solution for arbitrary values of 6 and P. The results exhibit a form of resonance when 
the secondary-flow time equals the oscillation period, giving rise to a prominent 
maximum in the transport rate. This observation is consistent with preliminary 
numerical results for oscillatory flow in a curved tube, and can be explained 
physically. 

1. Introduction 
Taylor (1953) first analysed the mixing of a bolus of marked fluid in steady laminar 

and turbulent flow in long straight tubes, far from the ends and from the site a t  which 
the bolus was introduced. In  those cases he showed that the longitudinal spreading 
could be described as a diffusive process, with an effective diffusivity proportional to 
the square of a typical axial velocity difference between different fluid elements, 
multiplied by the timescale for an individual solute molecule to sample all cross- 
stream locations at which different velocities exist. The more vigorous the mass 
transfer laterally (by diffusion, turbulence, etc.), the more restricted is the axial 
dispersion of the bolus. Subsequent workers have analysed the corresponding process 
for time-dependent laminar flow in a straight tube (Chatwin 1975; Watson 1983), 
and the results have been successfully tested experimentally (Joshi et al. 1983). In  
many applications, however, the tubes are curved or branched, resulting in vigorous 
secondary motions which are likely to be the dominant source of the lateral mixing 
involved in Taylor dispersion. One such application of particular interest involves 
the transport of gas through the airways of the lung during artificial ventilation with 
small-volume, high-frequency oscillation (Drazen, Kamm & Slutsky 1984). Others 
include dispersion in rivers or estuaries or in piping systems which typically involve 
bends and branching. 

Despite its importance, there has been relatively little work on the effects of 
seconda,ry motions on Taylor dispersion. Erdogan & Chatwin (1967) and Nunge, Lin 
8: Gill (1972) studied the problem of longitudinal dispersion in steady curved-tube 
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flow by asymptotic expansions, and found that the effect of secondary motion 
becomes important when DnZXc exceeds about lo2, where 

is the Dean number, assumed small by those authors, and 

A% = U / K  (1.2) 

is the Schmidt number. Here a is the radius and R the radius of curvature of the tube, 
w,, is the mean axial velocity, and v ,  K are the kinematic viscosity and solute or gas 
diffusivity of the fluid. The quantity Dn2Sc is a secondary-flow P6clet number 

P = V S U / K ,  (1.3) 

since the scale V, for secondary-flow velocities is Dn2u/a when D n  is small (Dean 
1928). 

These results have been extended numerically by Janssen (1976) and by Johnson 
& Kamm (1986). Both studies show a fall in the effective diffusivity due to the mixing 
associated with secondary flow, until a t  large values of Dn2Sc mixing along the 
secondary-flow streamlines is complete and isoconcentration contours generally line 
up with the secondary-flow streamlines. This occurs for Dn2Sc > lo5, when mixing 
along secondary-flow streamlines, as augmented by shear dispersion of the type 
described by Rhines & Young (1983) (see below), occurs on a timescale small 
compared with that for mixing between streamlines by molecular diffusion. 

The same techniques as those of Johnson & Kamm (1986) have been used to study 
the combined effects of oscillatory flow of period T, and curvature (Sharp 1987). He 
considered oscillatory, quasi-steady, fully developed flow in a curved tube and 
computed the convective and diffusive motions of a cloud of solute molecules for 
sufficiently high S c  that the concentration distribution was not quasi-steady. The 
axial variance of this cloud is used to calculate an effective diffusivity following the 
method of Johnson & Kamm (1986). The results (figure 1) showed that for 
Dn2Sc > 100 and 

p”(= 2xu2/tcT) > 1,  (1.4) 

the region not previously studied, there appeared to  be a maximal transport rate 
associated with the condition Dn2Sc/p2 z const. In  other words, a maximum is 
observed when the secondary-flow time is of the same order as the cycle period. 
Figure 1 also indicates that  the peak effective diffusivity diminishes somewhat as 
Dn2Sc increases and i t  is therefore of interest to investigate the limit of large 
secondary-flow P6clet number. 

In this paper we investigate the effect of an interaction between secondary flows 
and oscillations on longitudinal mixing by way of a simple model. Consider, for 
example, the annular region bounded by any pair of secondary streamlines in the 
cross-sectional plane of a curved tube as sketched in figure 2 (a) .  Within this distorted 
annulus, fluid particles experience oscillations in axial velocity due to their advection 
azound the annulus and to the time-periodic axial flow. Fluid particles in the 
imaginary annulus periodically experience axial velocities both greater than ( + ) and 
less than ( - )  the mean axial velocity on a particular streamline. Furthermore, if we 
restrict attention to flows for which the frequency parameter a, defined by 

a2 = P2/Sc = 2nu2/uT, f 1.5) 
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FIGURE 1. Results of a Monte Carlo simulation for normalized axial transport coefficient 
9 = D,,,/w~T as a function of /3* and Dn'Sc (Sharp 1987). 

FIGURE 2.  (a )  Secondary streamlines for flow in a curved tube, with simultaneous axial oscillation ; 
+ and - represent regions in which the axial velocity has opposite signs (relative to the mean) a t  
any instant. Hatchings represent the boundaries of an annular region, in which the flow is 
analogous to that in the annulus investigated in this paper and depicted in ( b ) .  

is small and Dn not too large, the axial and secondary velocities are quasi-steady and 
the streamline pattern is time-independent. In  the model problem (figure 2 b )  the 
fluid is contained in a circular annulus and experiences an oscillatory axial flow 
which, a t  any instant, has opposite signs on opposite sides of the annulus, together 
with a steady circumferential (secondary) flow. The model thus contains most of the 
important features of curved- tube flow. While somewhat idealized, the justification 
for the model lies primarily in the fact that it leads to a tractable mathematical 
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problem and hence to physical insight. Those aspects of the curved-tube problem 
that are not contained in the model problem are discussed in $6. 

Before giving a mathematical formulation and solution of the model problem, in 
the next section we present physical arguments leading to dimensional scaling laws 
for the effective diffusivity in various parameter ranges. 

2. Dimensional scaling 
Consider, first, purely oscillatory flow in an infinitely long straight tube and let 

the instantaneous axial velocity of a particle relative to the mean velocity wo be 
wrel = w-wo. The relative convective flux of some species across a cross-section A 
normal to the axis is 

E‘ = - Wre18dA, (2.1) : s, 
where B is species concentration and the overbar denotes a time average. The 
effective axial diffusivity, Deff, is defined by 

where x is the axial coordinate. Now, if wrel(t) is a stationary random process, we can 
write 

Deff = a S, d~ S,: <wrel(t) wrel(t-t’)) dt’, (2.3) 

where ( ) denotes an ensemble average which is independent of t for large t (Taylor 
1921). Equation (2.3) suggests the following scaling for Deff : 

Deff - w;e1 t ,  d, (2.4) 

where t, is the time during which the relative velocity of a particle remains correlated 
with its initial value, wrel is a characteristic value of relative axial velocity sampled 
in time t,, and d is the fraction of A occupied by the velocity differences. Thus, for 
steady flow in a straight pipe (Taylor 1953), t, equals the lateral diffusion time 
td( N a2/K),  wrel x wo and d = 1 ,  giving the familiar result 

Deff - w;a2/K. 

In oscillatory flow with period T ,  the velocity and concentration distributions are 
quasi-steady if t d / T  + 1,  provided Xc = v/K 2 1,  and then the above result applies. 
This can be normalized to read 

If, on the other hand, td/T % 1 and Xc 9 1, so that a2 + 1, then although the flow is 
quasi-steady, the concentration distribution, and hence the mass transfer, is not. The 
axial displacement of a fluid particle relative to the mean results from its lateral 
diffusion in the shear flow, which is uncorrelated in successive half-periods, giving 
t, N T .  Since the shear is still distributed over the entire cross-section, d = 1 and 
w,,, - (dw/dr) 6, where 6, is the distance of lateral diffusion in time t,: 6, - ( K T ) ~ .  
Combining, we obtain 

9-- for 2% 1 ,  &’c% 1 .  (2.7) 
T t 
td T 
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If, on the other hand, t d /T  % 1 and a2 % 1 (so Sc is not necessarily % l ) ,  the 
velocity and concentration distributions are both unsteady and velocity gradients 
are confined to  a narrow boundary layer near the wall of thickness S, - (vT);.  In this 
case, t ,  - T ,  d - S,/a and wTe1 N woSc/6,  - z u O ( K / v ) i .  Hence 

These results, which are consistent with previous analytical (Chatwin 1975 ; 
Watson 1983) and experimental (Joshi et al. 1983) studies, give rise to the maximum 
in 9 seen in figure 1 for td/T - O(1).  

A similar approach can be used in the presence of secondary motions. Consider 
oscillatory flow in a tube with secondary motions characterized by a velocity scale 
V,  and a circulation time, t, - a/V,. Now t,/t, is the secondary-flow PBclet number 
(1.3). If this is small, the secondary motions have little effect on lateral mixing and 
the results given above for a straight tube ((2.5)-(2.8)) apply. If t J t ,  % 1 but t d / T  4 1,  
the flow is quasi-steady but secondary motions are important. As shown by 
Johnson & Kamm (1986), the effect of secondary flow is to distort the 0-distribution 
from a radially symmetric pattern (where t , / t ,  < 1)  to one in which the 
isoconcentration contours line up with the secondary-flow streamlines (for t,/t, % 1) .  
In  both limits the lateral mixing time is established by molecular diffusion and a 
result similar to (2.6) is obtained: 

where f ( t d / t s )  is a weak function, ranging between 1.0 and 0.2 as t,/t, ranges from 
about 1 to lo3. 

When t,/t, % 1 and t d /T  $ 1,  both unsteadiness and curvature are likely to be 
important. Here we have only the preliminary numerical results of figure 1 to guide 
us, indicating a maximum in transport rate when t,/T = O(1). This condition 
corresponds to a sort of resonance in that the axial velocity a t  a point changes 
direction twice in the time it takes a particle to complete a circuit around the 
secondary-flow streamline. Consider a fluid particle on a particular secondary-flow 
streamline, for which the circulation time is exactly T ,  and suppose that wrel for this 
particle is positive when the bulk velocity is also positive. Then, a t  resonance, w,,, 
will still be positive when the bulk flow velocity is negative ; the particle's velocity 
will have been rectified, and the axial motion of a fluid particle can remain correlated 
with its initial value over many cycles. In fact, it  remains correlated until such time 
that the particle migrates around the streamline (or away from it) by some diffusive 
process. 

The process for mixing along a closed streamline was analysed for large values of 
P by Rhines & Young (1983). They showed that homogenization of the concentration 
distribution (or 'expulsion of concentration gradients ') takes place in two stages, 
rapid and slow. The rapid stage consists of the transformation of an arbitrary initial 
distribution into one that is uniform along individual streamlines but varies from one 
to another, while the slow stage consists of a gradual diffusive smoothing between 
streamlines (timescale td) .  The timescale for the rapid stage is governed by shear 
dispersion in the secondary flow, and is given by 

(2.10) t ,  - .4/,S@ - t,p-f. 
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FIGnRr:  3. Sketch showing how a solute blob placed at one location on the streamline S ( a )  
simultaneously diffuses to  neighbouring streamlines and is stretched due to  secondary shear ( b ) ,  
ultimately becoming uniformly mixed around the entire circumference (c). 

To understand this result, consider a blob of high concentration centred on one 
streamline S (figure 3). Solute diffuses to neighbouring streamlines where, as a result 
of secondary shear, the velocity is different, causing the blob to be stretched in the 
streamwise direction. Diffusion back to S then smoothes out the initial non-uniform 
concentration along S. Thc time t, is the time required for the outer part of the 
spreading blob, a transverse distance S, from S, say, to travel a distance O(a) relative 
to a particle on S. That is, 

(2.11) 

where A V  is the difference in velocity on streamlines a distance S, apart. If, as in a 
curved tube, the local velocity gradient can be scaled by Vs/a ,  then AV - V,S,/a and 
(2.11) gives 

8, = ( K U 2 / v s ) i ,  (2.12) 

the familiar scale for (quasi-) steady concentration boundary-layer thickness in a 
shear flow (LBvaque 1928) and (2.10) follows. We may note in addition that t, can 
also be evaluated as a ‘secondary Taylor dispersion’ time, a2/Ds,, where D,, = 

AV’S; /K is the scale for the effective diffusivity for shear dispersion along the 
secondary streamlines, as given by a formula like ( 2 . 5 ) .  

We can now envisage a region of width 6, surrounding that streamline for which 
exact resonance occurs ( t ,  = T ) ,  and within which particle axial velocities are 
correlated; we call this region the ‘critical layer’. Using the general approach 
developed above, we have wrel - w,,, t, - t ,  and the area that takes part in this 
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transport process is 2x8, a ,  giving d N 8Ja.  Combining these scaling relations with 
(2.4) and (2.11) yields 

g - t . , 1 ,  
T 

which accounts for the ridge of constant 9 found for t,/T = O(1) in figure 1 .  These 
scalings are confirmed by the analytical and numerical solutions that follow. 

3. Formulation of the model problem 
We consider the transport of solute in a uniform, effectively straight tube, with 

cross-section d of dimension a ,  containing an incompressible fluid. The flow is 
independent of axial coordinate z" ( A  denotes a dimensional variable) but has 
transverse as well as axial velocity components which scale with different velocities 
V, and wo respectively and which are supposed known. We suppos:, following 
previous authors such as Taylor (1953), that the solute concentration 8 is made up 
of a uniform axial gradient on which is superimposed a perturbation which depends 
only on transverse coordinates (i,Q) and t .  That is 

6 = -&+6,e(x ,y , t ) ,  (3.1) 

where (x, y )  = ( i / a ,  $ /a )  and Oo is a scale for the concentration fluctuations, chosen 
for convenience to be 

lo = dawo/vs .  

If the velocity components are non-dimensionalized appropriately, i.e. we take 
(u, v, w) = (zi/V,, ."/V,, &/wo), the convection-diffusion equation becomes 

ae 1 
-+u.VO = w+-V28, 
at P 

where vectors and vector operators are two-dimensional, i.e. u = (u, v) and 
V = @/ax,  slay), t is the time non-dimensionalized with respect to the secondary- 
flow circulation timescale a/V,, and P is the secondary-flow PBclet number, given by 
(1.3). Equation (3.2) is to be solved subject to the boundary condition 

- = o  
an 
ae 

(3.3) 

on the cross-sectional boundary aA, assumed smooth. The output of the calculation 
should be the mean axial solute flux, less that resulting directly from either molecular 
diffusion of the mean concentration gradient or advection of the mean gradient with 
the mean axial velocity if there is one. That is, we seek 

where ( ) represents a time mean, and 

F = 1. ( / lAwO dx d y ) 
A (3.5) 
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is the dimensionless additional flux. The effective longitudinal diffusivity is given by 
(2.2) to be 

wg a 
Deff = -If', (3.6) 

VS 

and A = SSA dxdy is the dimensionless cross-sectional area. 
We now postulate that  the axial flow is purely oscillatory with zero mean, i.e. 

w = Re{W(r) ei'Ot}, 

where r = (x,y) and w = 2xa/VsT K t,/T is the dimensionless frequency. Note that, 
in terms of the dimensionless effective diffusivity $3 introduced in $ 2 ,  we have 

w F  
$3 = -. 

27c (3.7) 

The secondary velocity field u is taken to be steady (as discussed in § 1 )  and we can 
therefore postulate a solution of (3.2) in which 

0 = Re {c (r )  ei'tJt}, 

where c is a complex function. The equation for c is 

1 
P i w c + u - v c =  W+-V2c,  (3.8) 

with boundary condition ac/an = 0 on aA, and the dimensionless mean excess 
flux is 

F=LRe{/[AW*cdrdy}, 2A (3.9) 

where W* is the complex conjugate of W. 
I n  the next two sections we look a t  simple examples in which the secondary flow 

has circular streamlines, and we solve (3.8) using polar coordinates (Y,$), in an 
annular domain bounded by the impermeable boundaries r = 1 and r = 1 + 8. We 
choose secondary velocity fields from the family given by 

B 
u# = V ( r )  = A r + -  

r u, = 0, (3.10) 

for some constants A ,  B, in order that the ( r ,  $)-components of the Navier-Stokes 
equation should be satisfied with simple boundary conditions. We also take W ( r )  to 
be a real function, for convenience ; this means that the axial velocity oscillates with 
the same (or opposite) phase everywhere, and is equivalent to the condition that the 
frequency parameter 01' (equation (1.5)) is small. 

The discussion of 92 shows that the secondary flow can influence the solute flux 
only if W depends on $, because otherwise all fluid particles on a secondary 
streamline have the same axial velocity. The linearity of (3.8) means that a general 
$-dependence can be investigated by Fourier analysis, but, again for simplicity, we 
restrict attention to one Fourier mode, taking 

W = Wo(r) cosq5 = +Wo(ei++e-i#). (3.11) 

(For consistency with the axial component of the Navier-Stokes equations this 
requires small axial Reynolds number as well as small a' ; actually to realize such a 
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velocity field would require a highly artificial distribution of axial body force or 
pressure gradient, but the idealization makes the mass transfer problem tractable 
and informative.) A solution is now sought in the form 

c = C+(r) eiQ +C-(r) e-i$, (3.12) 

where C+ - are complex functions, and (3.8) gives 

(3.13) 

to be solved subject to  the boundary conditions 

A- d‘+ - o a t r  = 1, I+&. (3.14) 
dr 

The final result should be an expression for the excess flux F ,  which is given by (3.9) 
to be 

F = & 1: Wo Re (C, + C-) r dr. (3.15) 

Because of the functional form (3.10) chosen for V ,  the solution of (3.13) can be 
written down in the form of integrals of Wo multiplied by complex Bessel functions. 
However, the integrals are difficult to interpret, and it is easier either to solve (3.13) 
numerically or to simplify further and perform asymptotic expansions in the limits 
6 4 1 and P 9 1. The latter is done in the next section, while the numerical solution 
of (3.13) is described in $ 5 .  

4. Asymptotic expansions 
Here we simplify the problem further by assuming a narrow gap (6 4 l), so 

that the dimensionless cross-sectional area A = 2x6,  and we concentrate on 
large secondary-flow PBclet number ( P  + 1). We change the radial variable to 
x = (r-l)/6, 0 < z d 1, so that, to leading order in 6, (3.13) is 

the boundary conditions are 

__- dC* - o a t x  = 0 , 1  
dx 

and E” = ;Re (I++I-) whereI, = W a c +  dx. 
- Jo - 

(4.1) 

(4.2) 

In  the limit 6 4 1, (3.10) requires that V(x) is either linear in x or constant ; we assume 
the same for W,(x). That is, either there is significant shear in the V -  or Wo-profile, 
or there is not. 

Case 1. N o  shear V = 1, W, = 1. Here the only non-uniformity in velocity is the 
#-dependence of W (equation (3.11)) and the only way solute molecules can be 
redistributed between fluid particles with different axial velocities is by azimuthal 
diffusion, represented by the 1 in the square bracket of (4.1). If this were absent, the 
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solutions for C ,  would be purely imaginary, so (4.2) gives F = 0 as expected. With 
the 1 present, (4.1) and (4.2) give 

Thus 

(4.3) 
[1 +P2(1 +w”]  F = iP 

P 
C, = 
- 2[l+;P(wfl)]’  1 + 2 ~ 2 ( 1  + 0 2 )  + ~ 4 ( 1 - ~ 2 ) 2 ’  

(4.4) 

as P+co, unless w 2 - 1  = O(P-l) in which case F = O(P)  as P - t c o ;  if w2 = 1 ,  then 

P - iP (4.5) 

as P + co . Thus even in this simple example there is a resonance a t  w = f 1 ,  when the 
oscillation period is the same as the time for one secondary-flow circuit, and the flux 
increases by a factor of O(P2) .  Such resonance recurs in the less trivial examples 
examined below, as discussed in physical terms in $2.  We note that if V had been 
taken equal to zero, the result (4.3) would be 

P 
4( 1 + P 2 w 2 )  ’ 

F =  

the result of the Watson theory for this case. Except a t  resonance, the secondary flow 
does not affect the large-P scaling of this result, merely modifying the numerical 
factor multiplying P-’. 

Case 2. V = 1,  W, = x. Here there is axial shear, so radial diffusion is not negligible, 
but the lack of secondary shear means that, except at resonance, the result should 
again exhibit the scaling predicted by Watson’s theory. Equation (4.1) can once more 
be solved exactly, and the solution that satisfies the boundary conditions contains a 
core term linear in x, which however contributes to the excess flux F only as a result 
of azimuthal diffusion, and terms exponential in x, which represent concentration 
boundary layers a t  the walls whose thickness is O(P-%) as P + 00. Despite the more 
complex structure, the excess flux scales approximately as in Case 1 ; the calculations 
are straightforward. As P+ GO with lo2- 11 % P - l P ,  F is given by (4.4) multiplied 
by a factor (;+1/d2) of which the larger term comes from radial diffusion in 
the boundary layers. As resonance is approached, i.e. as 1w2 - 1 )  approaches zero, 
F again increases, to a maximum of &,P when w2 = 1 ,  the same order of magnitude 
as in Case 1 .  

Case 3. V = V,+x, W, = x. In this case there is substantial azimuthal shear, as well 
as axial shear, and we have introduced a constant V ,  in order to allow the possibility 
of a line of zero secondary velocity, either in the interior of the annulus or a t  one of 
the walls. The governing equation (4.1) becomes 

d2C, 
dx ; ( - - 

-- ( k i Q )  ~ - a + * -  C ,  =-as~, (4.7) 

where Q = S2P and a ,  = - (V, k w ) .  The analysis that  follows is directed a t  finding 
the asymptotic form of the flux function F as Q + co ; a fort ior i ,  P + co, and we shall 
henceforth neglect the term l/P, which represents azimuthal diffusion and is 
never important in this case. As a check for consistency, and also as a demonstration 
of thc essential similarity of this model problem to the more realistic one of unsteady 
flow in a curved tube a t  small values of the Dean number (Sharp 1987, see above), 
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we shall also present, in $5, a numerical solution of (4.7), for values of Q that are not 
necessarily large. 

The substitution 
C+ - = *;i[ - 1 +a,( * iQ)fg+ - ( z ) ] ,  

where z = (*iQ)”x-a,), - (4.9) 

reduces (4.7) to the inhomogeneous form of Airy’s equation; the solution is 

g+ - = Fi, - (2) + a+ - Ai ( z )  + b - + Bi ( x ) ,  (4.10) 

where a+, - -  6 ,  are determined from the boundary conditions, Ai, Bi are the standard 

Fi+(z) - = Ti exp [ f i(+t3 + xt)] dt. (4.11) 

(This is the same as n eT2xi/3Hi ( z  eTZnil3) as defined by Olver 1974, pp. 430-432). The 
asymptotic expansions as IzI+ co of the functions appearing in (4.10) and their 
derivatives will be required; we list them in Appendix A for reference. 

The contributions of the three terms in (4.10) to the integrals I +  in (4.2) can be 
computed directly from the asymptotic expansions as long as remains large 
throughout the range of integration, but that is not the case if x = a+ anywhere in 
that range. Thus for each sign, plus or minus, there are three different cases to 
consider: ( a )  a+ - < 0, ( 6 )  a+ - > 1 and (c) 0 < a, - < 1,  with narrow transition regions in 
between. 

( a )  Here x - a +  > 0 throughout the annulus, so (4.9) gives z = s e*i”/6, where 
s = Q ~ ( x - a + ) + j c o  as Q -  co. Of the three terms in (4.10), the second turns out to 
be exponen6ally small except in a boundary layer near x = 0, and the third to be 
exponentially small except in a boundary layer near x = 1 .  The first term in (4.10) 
is of similar order throughout the annulus, and can be thought of as the ‘ core ’ term. 
Recalling that it is only the real parts of C+ that contribute to the flux F through 
the integrals I +  (equation (4.2)), we note that the leading term in the core 
(Pi, - - 1/z ,  equation (A 1 ) )  contributes nothing to the flux. The contributions to 
I ,  - from the second core term ( -2/z4) are 

Airy functions, and c4eT1n/6 

s, 

(4.12) 

where -a+ = V,+w > 0. The contribution from the a+ Ai-term (the boundary layer 
a t  x = 0) turns out to be O(Q-%) and is therefore negligible compared with (4.12). 
However, the b+ Bi-term (the boundary layer a t  x = 1 )  contributes the following 

(4.13) 

The difference between the two boundary-layer contributions arises because, in the 
integral (4.21, Wo( = x) is zero a t  x = 0 but not a t  x = 1. Combining (4.12) and (4.13) 
we obtain 

(4.14) 

the actual contribution to the excess flux E’ depends on whether both a+ and a- are 
negative, and the different cases will be examined later. 

(6) Here a+ > 1, x - a +  < 0 throughout the annulus, so now s-t-co as &+a, 
and the asymptotic expansions (A 3) must be used for the second and third terms in 
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(4.10). The results, however, arc unchanged, and we conclude that I +  - is given by 
(4.14) for all a+ outside the range [0,1]. 

( c )  0 < a+ (1, so z = 0 in the interior of the annulus, with the consequence that 
the asymptotic expansions (A l-A 3) cannot be used in a neighbourhood of x = a+ 
of thickness O(9-i); we call this region the critical layer. As long as a+ is not within 
O(Q-4) of 0 or 1 ,  howcvcr, it can be seen that the Ai-, Bi-terms in 14.10) are still 
exponentially small except in layers a t  the wall, and that their dominant contribution 
to 1, is O(Q-') and is given by (4.13). Thus we consider only Fi+(z). - If z is written 
ef1rr/6,~, then, from (4.8), the required integrals (4.2) become 

From the definition (4.11) of Fi+, - it follows that 

Re ( I + )  - = &mZ, - (4.16) 

(see Appendix B), which is O(1) as Q +  co and therefore dominates the other 
contributions. 

The above calculations can be combined to give asymptotic expansions for the 
excess flux F for all values of V, and w except those for which the critical layer 
is a t  one of the boundaries, i.e. a+ or ( l -a+)  is O(Q-a). These cases can be treated 
analytically, but the transition between cases already analysed is revealed by 
numerical solution of (4.7) to be smooth and of no great interest, except for the 
particular case in which a+ or a- is close to zero. I n  this case the critical layer is close 
to the inner wall of the annulus, x = 0, where the axial velocity is zero, and the 
contribution to the flux is small. In  particular, if a- is exactly zero, the leading 
contribution (4.15) to Re(I-)  is then identically zero, and the azimuthal diffusion 
term, l / S ,  in (4.7) is required to make Re ( I - )  non-zero. A little analysis shows that 
the dominant term in Re ( I - )  is then O ( & - k l ) ,  which is negligible compared with 
Re ( I+),  whether that is given by (4.14) or (4.16). 

We use the formulae (4.14) and (4.16) to calculate the excess flux F in the limit 
Q + co for various values of the frequency w ,  chosen to be positive without loss of 
generality. The results of course depend on the value of V,, representing the 
secondary velocity a t  the inner wall of the annulus; results are quoted for all typical 
cases except those for which the critical layer is a t  a boundary. 

Suppose first that V, > 0, then a- is always negative so I -  is given by (4.14). If, in 
addition, w < V, or w > 1 + V,, then a+ does not lie between 0 and 1 ,  and I+ is also 
given by (4.14). Thus the excess flux F (equation (4.2)) is given by 

). (4.17) 
1 +3(  V, + W )  + 3( V , + W ) ~  1 + 3( V, - w )  +3(  V, - w ) ~  

( ~ , - ~ ) ( i + ~ ~ - w ) 3  ( V o + o ) ( l +  V , + W ) ~  
+ 

The limits as w + 0 and w + 00 are of interest : as w + 0, 

F -[ 1 i 
12QVO 1 + V, 

1 as w + c o ,  p - -  
4Qw2 ' 

(4.18) 

(4.19) 

If V, < w < 1 + V,, then there is a critical layer and I+ is given by (4.16), so that 

F = ~ I T ( V , - W ) * .  (4.20) 
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Now suppose that V, < 0. If V, < - 1 ,  then a, is always greater than 1, and the 
results are very similar to those given above: F is given by (4.17) if w does not lie 
between - (1 + V,) and - V,, and is given by 

E' = &.( v, + w)2 (4.21) 

if w does lie in that range. However, if - 1 < V, < 0, it is possible for a critical layer 
to appear in the solution for both g, and g-. In that case, i.e. 0 < w < min (1  + V,, 
- V,), both I+ and 1- are given by (4.16), so 

F = $T( V: + w' ) .  (4.22) 

The above results correspond with the heuristic predictions of the order of 
magnitude of 9 made in $2. We recall that B = wF'/2x, from (3.7); since V, and w 
are taken to be 0 ( 1 ) ,  we see that (4.20) to (4.22) indeed give 9 - 1, as predicted for 
the case of resonance with secondary shear a t  the end of 92. Moreover, in the limit 
w +  00 (i.e. t, + T )  one would expect the secondary motion to become unimportant, 
so that result should reduce to Watson's (1983) predictions for straight-tube flow; 
equation (4.19) is indeed the result obtained from that theory for axial Couette flow 
in an annulus with velocity amplitude w,/1/2 a t  x = 1 (equal to the azimuthal r.m.s. 
axial velocity amplitude in our case): 

(cf. (2.7)). 

5. Numerical solutions 
5.1. Conjirmation of asymptotics for  Case 3 

We have also solved (4.7) numerically, retaining the term ( f l/iP) representing 
diffusion in the azimuthal (g5) direction. Thus, in contrast to the asymptotic analysis, 
the numerical results are valid for arbitrary Q and P. 

A solution to (4.7), with the zero-flux condition imposed at the walls, was obtained 
using a finite-difference method accurate to second order. The resulting complex 
coeficient matrix constituted a tridiagonal system that was solving using L-U 
decomposition and a subsequent back substitution to solve for C+(x) .  The 
dimensionless flux F and axial diffusivity 9 were then calculated by use of (3.15) and 
(3.7), respectively. 

The distribution of Re{W,(x)[C+(x)+C-(x)]} is useful as a local measure of axial 
transport. With regard to our earlier discussion (92), the zone in which this quantity 
is largest delineates the effective transport area represented by d. For the results 
shown in figure 4, w = 1.5, V, = 1,  and S = 0.1 ; hence the critical layer is centred 
about x = 0.5. The three curves shown for Q = lo2, lo3 and lo4 are consistent with 
the scaling predictions 6, K Q-i of $9 2 and 4. 

Figure 5 shows the distribution of Re {W,(x) [C+(x) + C-(x)]} for w = 10 and Q = 10, 
10' and lo3, demonstrating the dominant influence on transport exerted by the 
boundary layer of thickness (Pw)-i on the wall x = 1. For w < 1 (figure 6) the 
contribution to F is somewhat more uniformly distributed over the annulus. In both 
figures the contribution to the flux is negative in the core and positive in the 
boundary layer on x = 1,  as can be deduced from (4.12) and (4.13). 

By choosing a value for Q + 1, a direct quantitative comparison can be made 
between the asymptotic theory and the numerical prediction. In  figure 7 we plot the 
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numerical results for Q = lo3 in terms of the transport parameter 9. Also shown are 
the predictions of the asymptotic theory for the three cases of 94, Case 3 : (i) 0 - 0 ,  
(equation (4.8)), (ii), w +  00, (4.19) and (iii) Vo < w < ( 1  + Vo),  (4.20). Moreover the dip 
in the curve a t  w = 1 can also be explained by the asymptotic theory ; a- = 0 a t  that 
value of w so I -  does not contribute to the flux, and a+ = -2  so Re (I,) = 19/324&, 
from (4.14), and F = a Re (I+). The corresponding point is marked on figure 7 .  In  all 
cases the agreement is excellent, confirming the validity of both the asymptotic 
results (for Q 9 1 )  and the numerical scheme. 

5.2 .  Computations for  a wide annulus 

With the aim of producing a model that more closely mimics the process of axial 
dispersion in a curved tube, we now examine transport in a wide annulus; S - O(1) .  
The narrow-gap approximation leading to (4.7) is therefore no longer valid and we 
solve instead (3.13) with boundary conditions (3.14). As before, the full equation 
(including circumferential diffusion) is solved numerically by a second-order finite- 
difference scheme. 

For the numerical example considered here, S = 1,  Q = P,  V ( r )  = 2 / r  and 
W,(r) = r -  1.  Since we normalize radial distance by the inner radius of the annulus, 
the axial velocity varies between zero and one across the annulus, as in 94. The 
profile chosen for V ( r )  is a typical member of the family given by (3.10) that incor- 
porates shear in the secondary flow (i.e. is not solid-body rotation). 

Computed values for 9 as functions of p”( = t d / T )  are shown in figure 8 for values 
that are both large and small compared with one. Clearly visible for large P is the 
peak in 9, of 0(1), corresponding to the resonance condition (for the case chosen 
here, resonance occurs if 0.5 < w < 2.0), and therefore occurring a t  values of p” 
roughly proportional to P since w K p 2 / P .  As P is reduced the peak becomes less 
pronounced, and i t  is frozen a t  a fixed value of pz( z 1 )  for small P( < 10-l) when the 
effects of secondary flow are negligible. At sufficiently high w ,  all results approach a 
single curve of the form 9 cc p-2, whereas for w < 1,  9 cc pZP-’ for P 2 10. Both 
results are consistent with the analytical predictions of 94. When P < 10-1 and 
w < 1 ,  9 K p2, consistent with the quasi-steady result in the absence of 
secondary flow. 

These same results are plotted on a contour map in figure 9, showing more clearly 
the different types of behaviour. The ridge running diagonally across the figure 
corresponds to the condition w - 1 .  Another ridge of maximal 9 is located along 
p2 z 1 for w < 1 .  

This complex pattern of behaviour can be explained using the heuristic arguments 
of $2, for the separate zones indicated in the figure. I n  Zone 1 (p2 < 1,  P < 1 )  both T 
and t, are large compared with the diffusive time. Consequently, the result is as 
predicted for quasi-steady transport in a ‘quasi-straight’ tube (i.e. one in which 
secondary motions are unimportant) : t, - t, and W , , ~  - wo, leading to 9 cc p2. 

As oscillation frequency increases, we enter zone 2 which, for P < 1, is simply the 
high-frequency, straight-tube result. As the results show, however, this behaviour 
persists for P > 1 up to w % 1. In this latter region, although t, < t,, T is smaller still; 
the axial velocity will be correlated over either T or t, owing to migration in the shear 
flow by molecular diffusion. The shorter uncorrelation time, T in this case, is 
appropriate to use in (2.4), giving the observed result, 9 K p’. 

Zone 3 is entered from Zone 1 by increasing P,  thereby introducing the effects of 
secondary flow. The change in behaviour found on entering Zone 3 is, in a sense, 
analogous to that experienced in passing from Zone 1 into Zone 2. The analogy 
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follows from the observation that, as a fluid particle is advected around the annulus, 
its axial velocity oscillates owing to the #-dependence of W,  just as, in the absence 
of secondary motion, it oscillates owing to time-periodic motion at  a fixed location. 
As a particle traverses a secondary flow circuit, it can travel either faster or slower 
than the mean owing to diffusion in the shear field. Consequently, the particle 
experience a relative velocity proportional to the product of the diffusion distance in 
time t,, ( ~ t , ) ; ,  and the velocity gradient (w, /a) .  The persistence time is t,, giving the 
result from (2.4), 9 cc PpzPz. The analogy between Zones 2 and 3 is more evident if 
we use t ,  in the normalization of D e f f ,  giving Deff/(wit,) = P-l. This behaviour, we 
note, is distinctly different from that observed during quasi-steady flow in a curved 
tube, for the reasons discussed in $2. 

The arguments leading to a prediction for Zone 4 are found in $2. Here we merely 
note that the previous prediction, that  9 cc O(1).  is supported by the numerical 
result. 

6. Discussion 
The objective of this study was to gain new insights into the mechanism of axial 

transport in unsteady tube flows influenced by secondary motions. It is therefore 
appropriate to ask to what extent our model problem can be generalized to flows of 
greater practical importance. As discussed in $1, the most direct analogue is 
oscillatory flow in a curved tube, for which some preliminary numerical results were 
presented in figure 1. There are indeed strong similarities between these results and 
the model predictions, as can be seen by comparing figure 1 with the contour plot of 
the model calculation (figure 9). The regions indicated in figure 9 as Zones 1 and 2, 
exhibiting the character of a 'quasi-straight' tube, are also seen in figure 1. So is the 
ridge associated with a maximum in transport rate [9 - O( l)]  a t  o z 1 (Zone 4). The 
model thus supports our earlier claim that the peak in transport rate is associated 
with a condition of resonance, producing a rectified axial particle displacement 
through an interaction between the time-periodic axial flow and the secondary 
circulation. 

Some differences are evident, however, in Zone 3 (o > 1). In  the curved tube, 9 
becomes independent of P ( =  Dn2Xc) as P+ 00 (and hence w + O ,  for fixed t , /T) ,  
whereas the model prediction continues to fall, in proportion to o/P (from (4.18) and 
(3.7)). In both cases the initial fall in 3 as P increases results from a progressive 
enhancement of cross-sectional mixing due to the secondary flow. However, in the 
limit of perfect mixing along the secondary-flow streamlines, the average axial 
velocities of all particles on a particular secondary streamline are the same, zero for 
every streamline in our model problem because W cc cosq5. Since in the model this 
velocity is the same for all streamlines then, in the limit of perfect mixing along a 
streamline, all fluid travels a t  the same average speed and 9 + 0. In the curved tube, 
on the other hand, 9 asymptotically approaches a non-zero limit. This difference can 
be attributed to the non-uniform distribution of axial particle velocities that persists 
in a curved tube even when perfect mixing along secondary streamlines is achieved. 

This result is easily demonstrated mathematically. If, in the model, we let 
W = W,,(r) (1 + cos #), then the average velocity along a streamline is W,,(r) rather 
than zero. Concentration can be represented by C = C,  el# + C- e-'4 +C, where the 
new term, C,, satisfies 

1 d dC" 
iwC,= Wo(r)+-- r -  . 

r d r {  d r }  
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This is the same governing equation as obtains in the absence of secondary flows (cf. 
Watson 1983) and leads to an additive contribution to the flux and to the axial 
diffusivity. This contribution is negligible over much of the parameter space but is 
evident in the low-w, high-P regime of figure 1. 

The most striking feature exhibited by the model is the critical layer associated 
with the condition of ‘resonance ’ between the oscillation period and the circulation 
time. To the extent that resonance may be expected to occur more generally, it 
provides a potentially important means of enhancing the rate of axial transport in 
many applications. Resonance occurs when, in the absence of molecular diffusion, a 
fluid particle exhibits a net displacement from its initial position that is linear in time 
rather than periodic. Viewed in this way, the existence of a critical layer can be 
identified by determining conditions for which the Lagrangian axial displacement of 
a particle, z( t ) ,  becomes unbounded at  t --f co. 

In  an oscillatory flow of fundamental frequency Q and with fixed, closed secondary 
streamlines, the secondary flow, like the axial, will be unsteady and dependent on 
position on the streamline. On a given streamline the secondary velocity of a particle 
will consist of a mean value V, together with oscillations a t  frequencies that are 
multiples of the rotation frequency VJP,  where P is the streamline perimeter. It 
follows that a particle’s axial velocity will contain these frequencies as well as 
multiples of the oscillation frequency Q, coupled in a nonlinear way that gives a non- 
zero mean value for a number of different values of Q. Thus there may be several 
possible resonant frequencies for each streamline. Moreover, since the rotation 
frequency will in general vary between streamlines (in the case of flow in a curved 
tube i t  takes all values between zero and infinity) there may well be several 
streamlines on which resonance occurs for any given frequency, leading to the 
intriguing possibility of a large number of critical layers. 

Another potentially important effect in practical flows is associated with periodic 
variations in the secondary-streamline pattern. I n  a curved tube, for example, these 
occur if either the secondary flow is not quasi-steady (a2 > 1 ; see Lyne 1971) or the 
maximum value of the Dean number is large (or both). This could, in effect, produce 
efficient transverse mixing over the tube cross-section on the convective time- 
scale t, rather than the diffusive timescale t,. The result would be a smearing of 
the resonant peak and a consequent reduction in the contribution to 9 from the 
neighbourhood of w - 1 ; this may be the explanation for the downward slope of the 
diagonal ridge in figure 1. In addition, greater cross-sectional mixing would decrease 
9 in Zone 1 (quasi-steady and quasi-straight), but increase it in Zones 2 and 3 in that 
a fluid particle would sample a wide range of axial velocities during the persistence 
time of T or t,, in Zones 2 and 3 respectively. 

As a final point, one might ask what these results tell us about gas transport during 
high-frequency pulmonary ventilation (HFV), which provided the original moti- 
vation for this study. The geometrical complexity of the lung means that the 
idealizations made here can be expected to give no more than a rough qualitative 
indication of pulmonary transport (for example, the absence of fully developed flow 
means that the concept of effective diffusivity is itself a crude approximation). 
Nevertheless, we can see that when the secondary motions exhibit ordered structures, 
as has been observed in model bifurcations (Schroter & Sudlow 1969), the effect on 
transport may be very different from what one would predict based on an 
assumption of turbulent-like mixing. Specifically, there exists the potential for 
‘tuning ’ the oscillation frequency so that resonance is achieved, in a particular region 
of the lung, thereby greatly enhancing the local gas transport rates. Under resonant 
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conditions, a form of 'streaming ' occurs which is distinct from the types of streaming 
discussed by previous authors. The potential for this form of enhancement is found 
whenever td/T > 1 and P > 1 and is therefore most likely to be important in the 
central airways. To appreciate fully what impact this might have on HFV, we need 
to examine cases in which some convective mixing between streamlines is allowed. 
This may be the most important factor limiting the amount of transport 
enhancement possible, and is certain to occur in the lung. 
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to K. Sharp for providing us with his preliminary numerical results, presented in 
figure 1. We also gratefully acknowledge the financial support of the US National 
Science Foundation (Grant no. 8313017-MEA) and the UK Science and Engineering 
Research Council (Grant no. GR/D/76639). 

Appendix A. Asymptotic expansion of the Airy functions appearing in 
(4.10) 

For z = s e'i"/6,s (real) + 00, these can be deduced from Olver (1974), and are as 
follows : 

1 2  1 8  
2 2  25 

Fi;(x) - --+-+ . . . ;  (A 1) s + + m  Fi,(z) N - ; - ~ . . . ,  

where 

1 ( A 3 )  I 1 - 1  

ns  
Ai (x) - ( - z)- i  sin (c+an),  Ai'(z) - 7 ( - 2 ) ;  cos (y+in) 

1 1 
(z) - i  cos (c+ in) ,  Bi'(z) - ( - 2) ;  sin (c+$n) 

?P 
- < = Z( - z)" where 3 

Appendix B. Evaluation of added-flux integrals across the critical layer 

parts of 
We seek the real parts of the quantities I +  - defined in (4.15); i.e. we seek the real 

e k i n / 6 d s  
> 

and 

Substituting t = ekini6u in (4.11) gives 
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Hence, for k = 0,1,  

du s k a s .  (B 1 )  I I +  ( k )  - -4ak 1 2-k J:m { lym e-lu13/3 e-isu 
- 

Now? if we let j ( u )  = e-1ul3/3 

the curly bracket in (B 1)  is the Fourier transform off ,  so f can also be written 

Hence 

and I?) - = itncc",'(o) - = 0, 

from which (4.16) follows. 

IT) - = &nay - f ( 0 )  = &n.a; - 
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